МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

МЕТОД ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ ИНФЕКЦИИ МОЧЕВЫВОДЯЩИХ ПУТЕЙ ПРИ ЦИРРОЗЕ ПЕЧЕНИ

инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК:

учреждение образования «Гомельский государственный медицинский университет»

АВТОРЫ: д.м.н., профессор И.О.Стома, к.м.н., доцент Е.Г.Малаева, к.м.н., доцент Е.В.Воропаев, А.А.Ковалев, О.В.Осипкина, А.С.Шафорост, А.А.Зятьков, к.м.н., доцент Н.Н.Усова

В настоящей инструкции по применению (далее — инструкция) изложен метод определения вероятности инфекции мочевыводящих путей при циррозе печени, который может быть использован в комплексе медицинских услуг, направленных на медицинскую профилактику инфекций мочевыводящих путей при циррозе печени.

Инструкция предназначена для врачей лабораторной диагностики, врачей-терапевтов, врачей общей практики, врачей-гастроэнтерологов, врачей-инфекционистов, врачей-бактериологов, врачей-урологов, врачейнефрологов и иных врачей-специалистов организаций учреждений здравоохранения, оказывающих медицинскую помощь пациентам с циррозом печени в стационарных условиях.

1. Показания к применению

печени (K74),сопровождающийся цирроз симптомами инфекций мочевыводящих путей (одного или нескольких): клинических (повышение температуры, озноб, боли в поясничной области, боли при мочеиспускании, учащенное мочеиспускание) И лабораторных (лейкоцитоз, повышение СОЭ, повышение в крови концентрации Среактивного белка, прокальцитонина, лейкоцитурия, протеинурия) при отрицательном или сомнительном результате микробиологического исследования мочи.

2. Противопоказания

Противопоказания отсутствуют.

Ограничения к применению метода: заболевания, которые требуют назначения антибактериальных лекарственных препаратов или иммунодепрессантов за 1 месяц до исследования.

3. Перечень необходимых изделий медицинской техники и изделий медицинского назначения:

- холодильник, поддерживающий температуру в диапазоне +2...+8 0 C;

- морозильник, поддерживающий температуру минус 70 °C;
- морозильник, поддерживающий температуру в диапазоне минус 18...минус $20~^{0}$ С;
 - ПЦР-бокс с УФ-рециркулятором воздуха;
 - центрифуга (максимальное ускорение не менее 13000g);
- магнитный штатив для пробирок объемом 0,2 мл для очистки продуктов ПЦР;
 - штатив для вакуумных пробирок с ЭДТА для взятия крови;
- штатив «рабочее место» для микроцентрифужных пробирок объемом 0,2 мл и 1,5 мл.
- твердотельный термостат, поддерживающий диапазон температур $+40...+100~^{0}\mathrm{C};$
- термоконтейнер для транспортировки, поддерживающий температуру в диапазоне +2...+8 0 C;
 - микроцентрифуга-вортекс;
 - аспиратор с колбой-ловушкой объемом 1л;
- комплект пипеточных дозаторов (объемы: 0,5-10 мкл, 10-100 мкл;100-1000 мкл);
- спектрофотометр для измерения концентрации и определения качества нуклеиновых кислот;
 - флуориметр для измерения концентрации двуцепочечной ДНК;
 - амплификатор (термоциклер);
- система для электрофоретического разделения и детекции нуклеиновых кислот;
- высокопроизводительный секвенатор, имеющий функцию длины прочтения не менее 250 нуклеотидов;
- сервер с установленным набором программного обеспечения для биоинформатического анализа данных и определения состава микробиоты

(FastQC [1], Preprocess16S [2], Trimmonatic [3], Kraken2 [4] (база PlusPF от 05.06.2024 [5]), ссылки приведены в приложении 2) или аналогичное программное обеспечение для проверки качества прочтений, удаления последовательностей праймеров, фильтрации некачественных прочтений и классификации таксономических последовательностей).

- набор реагентов для экстракции ДНК для высокопроизводительного секвенирования;
 - набор магнитных частиц для очистки ДНК;
 - деионизированная вода;
 - этиловый спирт 80%;
 - набор реагентов для измерения концентрации двуцепочечной ДНК,
 - ЦР-смесь с высокоточной ДНК-полимеразой;
 - праймеры на V3-V4 регион гена 16S рРНК прокариот:
 - прямой V3/V4: 5'-последовательность адаптера-cctacgggnggcwgcag'3,
- обратный V3/V4: 5'-последовательность адаптераgactachvgggtatctaatcc'3;
 - праймеры на V1-V5 регион гена 16S рРНК прокариот:
 - прямой V1-V5: 5'agagtttgatcctggctcag'3,
 - обратный V1-V5: 5'ccgtcaattcctttragttt'3;
 - натрия гидроксид концентрацией 2 моль/дм³;
- набор индексов, совместимый с используемым высокопроизводительным секвенатором;
- проточная ячейка, совместимая с используемым высокопроизводительным секвенатором;
- картридж, совместимый с используемым высокопроизводительным секвенатором;
 - стандартный контрольный образец (фаговый геном PhiX174);
 - стерильные флаконы для сбора мочи;

- индивидуальные пакеты с Zip-Lock;
- ПЦР-пробирки объемом 0,2 мл;
- микроцентрифужные пробирки объемом 1,5 мл;
- наконечники с фильтром для автоматических дозаторов объемом 10,
 20, 200, 1000 мкл; наконечники без фильтра для автоматического дозатора объемом 200 мкл;
- комплект средств индивидуальной защиты (одноразовые стерильные халаты, латексные перчатки, маски, бахилы, шапочки).

4. Технология осуществления метода

Метод, изложенный в данной инструкции, реализуется в несколько этапов в соответствии с алгоритмом (приложение 1 к настоящей инструкции).

Этапы

4.1 Получение и транспортировка биологического материала

B биологического качестве материала используют свежевыпущенную мочу. Получение биоматериала проводят утром в стерильные флаконы для сбора мочи. Транспортировку образцов мочи в лабораторию осуществляют В течение 1-2 часов после биоматериала в термоконтейнере для транспортировки с температурным режимом +2...+8 °С. Хранение образцов мочи осуществляют при температуре не выше минус 70° С.

4.2 Пробоподготовка образцов мочи для проведения высокопроизводительного секвенирования:

4.2.1 Экстракция ДНК

Проводят с использованием коммерческих наборов, адаптированных для высокопроизводительного секвенирования. Определение качественных и количественных характеристик ДНК в полученных после экстракции образцов кала проводят с использованием спектрофотометра.

Для дальнейшего анализа используют образцы ДНК, для которых соотношение экстинкций $A_{260}/A_{280} \ge 1,67$ и $A_{260}/A_{230} \ge 1,90$.

4.2.2 Проведение целевой ПЦР

Состав ПЦР-смеси и программа амплификации для проведения целевой ПЦР приведены в таблице 1.

Таблица 1 — Состав ПЦР-смеси и программа амплификации для проведения целевой ПЦР

Состав реакционной смеси (на 1 реакцию с итоговым объемом 25 мкл)	Программа целевой ПЦР	
2,5х ПЦР-смесь с высокоточной ДНК-	+98 °C – 30 c*	1 цикл
полимеразой – 10 мкл	+98 °C – 5 c*	25
Прямой праймер V3-V4 (1 пМ/мкл) – 5 мкл	+55 °C – 30 c	
Обратный праймер V3-V4 (1 пМ/мкл) – 5	+72 °C – 30 c	циклов
мкл	172 °C 200 °	1
Образец ДНК – 5 мкл	+72 °C – 300 c	1 цикл

^{*}Примечание: температура и продолжительность этапа зависит от используемой ДНК-полимеразы и приведена в инструкции производителя.

В результате проведения целевой ПЦР получают амплифицированные фрагменты региона V3-V4 гена 16S рРНК прокариот (далее – ампликоны V3-V4.).

4.2.3 Оценка результатов целевой ПЦР

Проводят электрофоретическое разделение и детекцию ампликонов V3-V4. визуализации V3-V4 При фрагмента ампликонов соответствующего проводят размера очистку cиспользованием магнитных частиц (см. этап 4.2.5), если фрагмент соответствующего размера в ампликонах V3-V4 отсутствует, проводят этап обогащения образцов (см. этап 4.2.4).

4.2.4 Обогащение образцов ДНК с последующей целевой ПЦР

Обогащение образцов ДНК проводят с использованием праймеров

V1-V5 гена 16S рРНК прокариот, состав ПЦР-смеси и программа амплификации приведены в таблице 2.

Таблица 2 — Состав реакционной смеси и программа амплификации, используемые для обогащения образцов

Состав реакционной смеси	Программа ПЦР	
(на 1 реакцию с итоговым объемом 25		
мкл)		
2,5х ПЦР-смесь с высокоточной ДНК-	+98 °C – 30 c*	1 цикл
полимеразой – 10 мкл	+98 °C – 5 c*	15
V1- $V5$ -прямой $-$ 0,2 мкл (50 п M /мкл)	+55 °C – 20 c	10
V1- $V5$ -обратный $-$ 0,2 мкл (50 п M /мкл)	+72 °C – 50 c	ЦИКЛОВ
Вода – 9,6 мкл	+72°C – 120 c	1 ,,,,,,,,
Образец ДНК – 5 мкл	+/2 C - 120 C	1 цикл

^{*}Примечание: температура и продолжительность этапа зависит от используемой ДНК-полимеразы и приведена в инструкции производителя.

В результате проведения ПЦР-обогащения получают амплифицированные фрагменты региона V1-V5 гена 16S рРНК (далее – ампликоны V1-V5).

Далее проводят целевую ПЦР для ампликонов V1-V5, состав реакционной смеси и программа амплификации приведены в таблице 3.

Таблица 3 — Состав ПЦР-смеси и программа амплификации для проведения целевой ПЦР

Состав реакционной смеси	Программа целевой	
(на 1 реакцию с итоговым объемом 25 мкл)	ПЦР	
2,5х ПЦР-смесь с высокоточной ДНК-	+98 °C – 30 c*	1 цикл
полимеразой – 10 мкл	+98 °C – 5 c*	20
Прямой праймер V3-V4 (1 пМ/мкл) – 5 мкл	+55 °C – 30 c	_ 0
Обратный праймер V3-V4 (1 пМ/мкл) – 5 мкл	+72 °C – 30 c	циклов
Вода – 4,9 мкл	172 °C 200 °	1
Ампликоны $V1$ - $V5$ $ 0$, 1 мкл	$+72 ^{\circ}\text{C} - 300 \text{c}$	1 цикл

^{*}Примечание: температура и продолжительность этапа зависит от используемой ДНК-полимеразы и приведена в инструкции производителя.

В результате проведения целевой ПЦР получают ампликоны V3-V4.

Оценку результатов целевой ПЦР осуществляют, как описано в этапе 4.2.3., при отсутствии фрагмента ампликонов V3-V4 после обогащения, данные образцы исключаются из протокола пробоподготовки образцов мочи для проведения высокопроизводительного секвенирования.

Для ампликонов V3-V4 после обогащения с выявленным фрагментом проводят очистку с использованием магнитных частиц (см. этап 4.2.5).

4.2.5 Очистка и нормализация концентрации ампликонов V3-V4

Для очистки к 20 мкл ампликона V3-V4 добавляют 16 мкл смеси магнитных частиц, пипетируют (не менее 10 раз) до образования гомогенной смеси. Инкубируют 5 мин. при температуре +18...+25 °C. ПЦР-пробирки объемом 0,2 мл с полученной смесью помещают на магнитный штатив и инкубируют 2 мин. при температуре +18...+25 °C. На протяжении всех последующих этапов промывки ПЦР-пробирки объемом 0,2 мл остаются в магнитном штативе.

Удаляют супернатант, добавляют 200 мкл свежеприготовленного 80% этилового спирта, инкубируют 30 с при температуре +18...+25 °C. Затем удаляют спирт и повторно вносят 200 мкл свежеприготовленного 80% этилового спирта, инкубируют 30 с, а затем проводят полное удаление остатков спирта.

Выдерживают ПЦР-пробирки с открытой крышкой на обычном штативе при температуре +18...+25 °C в течение 10 мин. Элюцию проводят путем добавления 52,5 мкл деионизированной воды в ПЦР-пробирки объемом 0,2 мл с последующим пипетированием до полного растворения осадка магнитных частиц. Далее ПЦР-пробирки инкубируют 2 мин. при температуре +18...+25 °C и устанавливают на магнитный штатив, инкубируют 2 мин., после чего супернатант, содержащий

очищенные ампликоны V3-V4, переносят в новые ПЦР-пробирки объемом 0,2 мл.

Проводят измерение концентрации ДНК на флуориметре с использованием коммерческого набора для измерения концентрации двуцепочечной ДНК.

Выполняют разведение очищенных ампликонов V3-V4 деионизированной водой до концентрации 5 нг/мкл.

4.2.6 Индексная ПЦР

В таблице 4 приведен состав смеси и условия амплификации для проведения индексной ПЦР.

Таблица 4 — Состав ПЦР-смеси и программа амплификации для проведения индексной ПЦР

Состав реакционной смеси (на 1 реакцию с	Программа индексной	
итоговым объемом 50 мкл)	ПЦР	
2,5х ПЦР-смесь с высокоточной ДНК-	+98 °C – 30 с* 1 цикл	
полимеразой – 20 мкл	+98 °C – 5 c*	
Индекс-праймер 1 – 5 мкл	+55 °C – 30 c	
Индекс-праймер 2 – 5 мкл	+72 °C – 30 с циклов	
Вода – 10 мкл	172 °C 200 a 1	
Очищенный ампликон V3-V4 — 10 мкл	+72 °C – 300 с 1 цикл	

^{*}Примечание: температура и продолжительность этапа зависит от используемой ДНК-полимеразы и приведена в инструкции производителя.

В результате проведения индексной ПЦР получают ампликоны V3-V4 с индексами.

4.2.7 Очистка ампликонов V3-V4 с индексами

К 50 мкл ампликонов V3-V4 с индексами добавляют 56 мкл смеси магнитных частиц, пипетируют (не менее 10 раз) до образования гомогенной смеси. Инкубируют 5 мин. при температуре +18...+25 °C.

ПЦР-пробирки объемом 0,2 мл с полученной смесью помещают на магнитный штатив и инкубируют 2 мин. при температуре +18...+25 °C. На протяжении всех последующих этапов промывки ПЦР-пробирки объемом 0,2 мл остаются в магнитном штативе.

Удаляют супернатант, добавляют 200 мкл свежеприготовленного 80% этилового спирта, инкубируют 30 с при температуре +18...+25 °C. Затем удаляют спирт и повторно вносят 200 мкл свежеприготовленного 80% этилового спирта, инкубируют 30 с, а затем проводят полное удаление остатков спирта.

Выдерживают ПЦР-пробирки с открытой крышкой на обычном штативе при температуре +18...+25 °C в течение 10 мин. Элюцию проводят путем добавления 27,5 мкл деионизированной воды в ПЦР-пробирки объемом 0,2 мл с последующим пипетированием до полного растворения осадка магнитных частиц. Далее ПЦР-пробирки инкубируют 2 мин. при температуре +18...+25 °C и устанавливают на 2 мин. на магнитный штатив, после чего супернатант, содержащий очищенные ампликоны V3-V4 с индексами, и переносят в новые ПЦР-пробирки объемом 0,2 мл.

4.2.8 Оценка результатов проведения индексной ПЦР

Проводят электрофоретическое разделение и детекцию очищенных ампликонов V3-V4 с индексами, затем измеряют их концентрацию на флуориметре с использованием коммерческих наборов для измерения концентрации двуцепочечной ДНК.

4.3 Настройка высокопроизводительного секвенатора

Нормализация очищенных V3-V4 ампликонов cиндексами, образца настройка приготовление для секвенирования И высокопроизводительного секвенатора производится согласно руководству к прибору для секвенирования фрагмента гена 16S рРНК прокариот.

4.4 Биоинформатический анализ

Для проведения биоинформатического анализа и определения состава микробиоты используют сервер с установленным программным обеспечением: FastQC, Preprocess16S, Trimmonatic, Kraken2 (приложение 2).

4.5 Проведение расчета

Расчет модифицированного коэффициента дисбиоза MDR (modified dysbiosis ratio) (индекс соотношения основных микроорганизмов мочи) проводят после определения состава микробиоты методом высокопроизводительного секвенирования и биоинформатического анализа.

После проведения биоинформационного анализа рассчитывают модифицированный коэффициент дисбиоза (MDR) по формуле 1:

$$\mathbf{MDR} = \frac{\mathit{Gammaproteobacteria}\,(\%) + \mathit{Bacilli}(\%)}{\mathit{Prevotella}(\%) + \mathit{Clostridioides}(\%) + \mathit{Bacteroidota}\,(\%)}, (1)$$

где Gammaproteobacteria (%) — относительная представленность бактерий класса Gammaproteobacteria;

Bacilli(%) — относительная представленность бактерий класса Bacilli:

Prevotella (%) – относительная представленность бактерий рода Prevotella;

Clostridioides (%) — относительная представленность бактерий рода Clostridioides;

Bacteroidota (%) — относительная представленность бактерий muna Bacteroidota.

4.6 Определение вероятности развития инфекции мочевыводящих путей (ИМВП) при циррозе печени

Определение вероятности развития инфекции мочевыводящих путей (ИМВП) при циррозе печени проводят по значению модифицированного коэффициента дисбиоза (таблица 5).

Таблица 5 – Оценка вероятности развития ИМВП на основании значения MDR

Вероятность ИМВП	Значение MDR
высокая	>23,5
низкая	≤23,5

4.7 Принятие управленческого решения

При высокой вероятности ИМВП (MDR>23,5) осуществляются мероприятия в соответствии с заболеванием «Инфекция мочевыводящих путей не установленной локализации (N39.0)» Клинического протокола диагностики и лечения пациентов (взрослое население) с урологическими заболеваниями при оказании медицинской помощи в амбулаторных и стационарных условиях районных, областных и республиканских организаций здравоохранения Республики Беларусь, утвержденного приказом Министерства здравоохранения Республики Беларусь от 22.09.2011 № 920.

При низкой вероятности ИМВП (MDR≤23,5) через 3 месяца осуществляется повторное исследование для определения вероятности развития инфекции мочевыводящих путей (ИМВП) при циррозе печени в соответствии с пунктами 4.1–4.6 настоящей инструкции.

6. Перечень возможных осложнений или ошибок.

При точном соблюдении инструкции ошибки маловероятны.

Приложение 1 Алгоритм определения вероятности развития инфекции мочевыводящих путей (ИМВП) при циррозе печени

_	Сбор образцов мочи и ее транспортировка в лабораторию			
Экстракция и оценка качества полученной ДНК				
НИЗ	Прорадациа и	одорой ППР (праймеры V2 V4)		
Я	Проведение целевой ПЦР (праймеры V3-V4)			
) ОВе	Онония	разун татар напарай ППР		
я пр рова	Оценка результатов целевой ПЦР, (электрофоретическое разделение, детекция ампликонов V3-V4)			
ДЛ	1	•		
мочи	Обнаружен фрагмент ампликонов V3-V4	Не обнаружен фрагмен т ампликонов V3-V4		
19 I		•		
Пробоподготовка образцов мочи для проведения высокопроизводительного секвенирования		Обогащение образцов ДНК (ПЦР с праймерами V1-V5) с последующей целевой ПЦР (праймеры V3-V4)		
а 0 Дит		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
BO,	Очистка ампликонов V3-V4 и нормализация концентрации			
0ТС	очищенных а	мпликонов V3-V4 до 5 нг/мкл		
THO IID		Н		
ОПС 0КО		Индексная ПЦР		
000	Очистка амп	ликонов V3-V4 с индексами		
Прв	O Merka alvin	ф те индексими ф		
		атов индексной ПЦР (проведение		
		ого разделения нуклеиновых кислот и		
	измерение концентраг	ции ДНК с использованием флуориметра)		
	Настройка высокопр	оизводительного секвенатора		
		•		
	Биоинформатический анализ			
1				
Проведение расчета				
Определение вероятности развития инфекции				
мочевыводящих путей (ИМВП) при циррозе печени				
Принятие управленческого решения				
ipminine jupublich teckoro pemenni				

Приложение 2

(справочное)

Адреса репозиториев программного обеспечения для выполнения биоинформатического анализа данных высокопроизводительного секвенирования образцов мочи

для определения коэффициента дисбиоза (MDR)

- 1. Andrews, S. FastQC. GitHub (quality control analysis tool for high throughput sequencing data) [Электронный ресурс]. Режим доступа: https://github.com/s-andrews/FastQC.
- 2. Sikolenko, M. Preprocess16S. GitHub (Preprocessing for 16S rDNA Illumina reads) [Электронный ресурс]. Режим доступа: https://github.com/masikol/preprocess16S.
- 3. Flutre, T. Trimmomatic. GitHub (Read trimming tool for Illumina NGS data) [Электронный ресурс]. Режим доступа: https://github.com/timflutre/trimmomatic.
- 4. Wood, D. Kraken2. GitHub (taxonomic sequence classification system) [Электронный ресурс]. Режим доступа: https://github.com/DerrickWood/kraken2.
- 5. Langmead, B. Kraken 2, KrakenUniq and Bracken indexes. BenLangmead [Электронный ресурс] / benlangmead.github.io. Режим доступа: https://benlangmead.github.io/aws-indexes/k2.

ОБОСНОВАНИЕ ЦЕЛЕСООБРАЗНОСТИ ПРАКТИЧЕСКОГО ИСПОЛЬЗОВАНИЯ ИНСТРУКЦИИ ПО ПРИМЕНЕНИЮ «МЕТОД ПРОГНОЗИРОВАНИЯ ИНФЕКЦИИ МОЧЕВЫВОДЯЩИХ ПУТЕЙ ПРИ ЦИРРОЗЕ ПЕЧЕНИ»

Изучение микробиома и микробиоты человека является актуальной в связи с открытием новых перспектив исследования патогенетических механизмов развития заболеваний и патологических функциональных состояний, а также возможностей их коррекции. Термины «микробиом» и «микробиота» становятся частью лексики практического врача [1].

Взаимодействие микробиоты и организма человека осуществляется на принципах мутуализма. При этой форме симбиоза пользу извлекает как человек, так и его микробиота [2]. С помощью микроорганизмов человек способен выполнять функции, которые не кодируются собственным геномом, такие как защита от инвазивных патогенов, извлечение дополнительной энергии из пищи, синтез ключевых молекул для развития собственных клеток и тканей [3].

Значение микробиоты в развитии патологических состояний многих органов и систем стало очевидным после открытия осей взаимосвязи «микробиота кишечника — головной мозг», «микробиота кишечника — печень», «микробиота кишечника — дыхательная система», «микробиота кишечника — урогенитальный тракт», что сделало кишечник основным органом, отвечающим за здоровье человека [3, 4].

Новые данные показывают, что микроорганизмы, населяющие мочевыводящие пути, которые долгое время считались стерильными у здоровых людей, могут играть определенную роль в поддержании здоровья мочевыводящих путей. Исследования микробиоты мочи выявили значительные различия между здоровыми популяциями и людьми с

урологическими заболеваниями [5]. Мочевыводящие пути являются местом обитания уникальной микробиоты [6,7].

Новые технологии обнаружения микроорганизмов позволили выявить другие виды бактерий в составе микробиоты мочевыводящих путей. Чаще всего обнаруживают представителей рода *Lactobacillus* и, в меньшей степени, *Gardnerella*, *Streptococcus* и *Corynebacterium*. Также выявлены различные сообщества грибков.

Микробиота играет важную роль в инициации и прогрессировании некоторых заболеваний печени и не вызывает сомнения связь кишечной микробиоты с заболеваниями печени – неалкогольной жировой болезнью неалкогольным стеатогепатитом, алкогольным печени, аутоиммунным гепатитом. Во многих исследованиях доказана кишечной микробиоты прогрессировании роль В лекарственнопоражений индуцированных печени, аутоиммунного гепатита, осложнений цирроза первую печеночной печени, очередь В энцефалопатии [8].

Таким образом, изучение микробиоты, установление ассоциативных взаимосвязей между микроорганизмами, факторов, влияющих на видовой и количественный состав, позволит повысить качество терапии инфекционных и соматических заболеваний, а также поспособствует разработке новых фармакологических препаратов для профилактики, лечения, сокращения времени лечения социально-значимых заболеваний.

Список использованных источников

1. Brubaker, L. The female urinary microbiota, urinary health and common urinary disorders / L. Brubaker, A.J. Wolfe // Ann. Transl. Med. -2017.-Vol.5, No.2.-P.34-40.

- 2. Ситкин, С.И. Метаболический дисбиоз кишечника и его биомаркеры / С.И. Ситкин, Е.И. Ткаченко, Т.Я. Вахитов // Экспериментальная и клиническая гастроэнтерология. 2015. 124 (12) С. 6–29.
- 3. Стома, И.О. Микробиом в медицине: руководство для врачей // И.О. Стома. М.: ГЭОТАР-Медиа. 2020. 320 с.
- 4. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges / G. Berg, et al. // Microbiom. 2020. Vol. 8 (103). P. 1–22. doi.org/10.1186/s40168-020-00875-0.
- 5. Whiteside SA et al. The microbiome of the urinary tract--a role beyond infection / SA Whiteside et al. // Nat Rev Urol. 2015. Feb;12(2). P. 81-90. doi: 10.1038/nrurol.2014.361. Epub 2015 Jan 20. PMID: 25600098.
- 6. Hilt EE et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder / EE Hilt et al. // J Clin Microbiol. 2014. Mar;52(3). P. 871-6. doi: 10.1128/JCM.02876-13. Epub 2013 Dec 26. PMID: 24371246; PMCID: PMC3957746.
- 7. Pearce MM et al. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence / MM Pearce et al. // mBio. 2014. Jul 8;5(4). P. e01283-14. doi: 10.1128/mBio.01283-14. PMID: 25006228; PMCID: PMC4161260.
- 8. Philips, C.A., et al. Modulating the intestinal microbiota: therapeutic opportunities in liver disease / C.A. Philips, et al. // J. Clin. Transl. Hepatol. 2020. Vol. 8(1). P. 87–99. doi: 10.14218/JCTH.2019.00035.