МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Первый заместитель Министра
Т.Л.Богдан

2021 г.
Регистрационный № 196-1220

МЕТОД ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ РАЗВИТИЯ СЕПТИЧЕСКИХ СОСТОЯНИЙ

(инструкция по применению)

УЧРЕЖДЕНИЯ-РАЗРАБОТЧИКИ: государственное учреждение «Республиканский научно-практический центр эпидемиологии и микробиологии», учреждение образования «Белорусский государственный медицинский университет»

АВТОРЫ: Трусевич М.О., д-р мед. наук, профессор, член-корр. НАН Беларуси Титов Л.П., канд. мед. наук, доцент Горбич Ю.Л.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Первый заместитель министра
Е. Л. Богдан
28.01.2021
Регистрационный № 196-1220

МЕТОД ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ РАЗВИТИЯ СЕПТИЧЕСКИХ СОСТОЯНИЙ

инструкция по применению

УЧРЕЖДЕНИЯ-РАЗРАБОТЧИКИ: ГУ «Республиканский научно-практический центр эпидемиологии и микробиологии», УО «Белорусский государственный медицинский университет»

АВТОРЫ: М. О. Трусевич, д-р мед. наук, проф., чл.-корр. НАН Беларуси Л. П. Титов, канд. мед. наук, доц. Ю. Л. Горбич

Минск 2020

В настоящей инструкции по применению (далее — инструкция) изложен метод определения вероятности развития септических состояний, который может быть использован в комплексе медицинских услуг, направленных на медицинскую профилактику сепсиса и септического шока.

Метод, изложенный в данной инструкции, предназначен для врачейинфекционистов, врачей-лаборантов организаций здравоохранения, оказывающих медицинскую помощь пациентам с бактериемией в амбулаторных и (или) стационарных условиях, и (или) в условиях отделений дневного пребывания.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ, РЕАКТИВОВ, СРЕДСТВ, ИЗДЕЛИЙ МЕДИЦИНСКОЙ ТЕХНИКИ

Изделия медицинской техники для исследования

Проточная цитометрия

- 1. Цитофлюориметр проточный.
- 2. Центрифуга лабораторная, обеспечивающая скорость вращения ротора до 3000 об/мин.
 - 3. Вортекс.
 - 4. Дозаторы автоматические переменного объема.
 - 5. Холодильник (от 2 до 8 °C).
 - 6. УФ-лампа бактерицидная.

Иммуноферментный анализ

- 1. Анализатор иммуноферментный автоматический.
- 2. Дозаторы автоматические переменного объема.
- 3. УФ-лампа бактерицидная

Реактивы для исследования

Проточная цитометрия

- 1. Моноклональные антитела к антигенам человека: lin (CD3, CD14, CD16, CD19, CD20 и CD56), HLA-DR, CD11c, CD123, CD64, CD163.
 - 2. Фосфатно-солевой буферный раствор рН 7,2-7,4.
 - 3. Раствор для лизиса эритроцитов.

Иммуноферментный анализ

- 1. Набор реагентов для иммуноферментного определения концентрации прокальцитонина.
- 2. Набор реагентов для иммуноферментного определения концентрации интерлейкина-6.
- 3. Набор реагентов для иммуноферментного определения концентрации пресепсина (sCD14).

Необходимы следующие изделия медицинского назначения: пробирки для цитофлюориметра; одноразовые наконечники для автоматических дозаторов от 200 до 5000 мкл; вакутайнеры с ЭДТА; вакутайнеры без антикоагулянта; штативы для пробирок; халаты, резиновые перчатки.

Качество используемых реактивов должно соответствовать техническим требованиям, предъявляемым к реагентам для иммунологических и серологических исследований.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Стрептококковый сепсис (A40), другой сепсис (A41), септический шок (R57.2).

ПРОТИВОПОКАЗАНИЯ ДЛЯ ПРИМЕНЕНИЯ

Отсутствуют.

ОПИСАНИЕ ТЕХНОЛОГИИ ИСПОЛЬЗОВАНИЯ МЕТОДА

Материалом для исследования является цельная периферическая кровь. Метод определения вероятности развития септических состояний пациентов основан на определении сывороточных уровней прокальцитонина, интерлейкина-6 и пресепсина, а также на иммунофенотипическом определении субпопуляций дендритных клеток и CD64 на нейтрофилах.

Этап 1. Получение и транспортировка биологического материала

Получение биологического материала (кровь) производится общепринятыми методами из локтевой вены в объеме 5 мл в вакутайнеры с ЭДТА и в объеме 5 мл в вакутайнеры без антикоагулянта.

Вакутайнеры с кровью доставляются в лабораторию в день получения материала. Кровь хранится до использования не более 8 ч при комнатной температуре.

Этап 2. Определение сывороточных маркеров воспаления методом иммуноферментного анализа

Количественное определения содержания прокальцитонина, интерлейкина-6 и пресепсина в сыворотке крови осуществляются иммуноферментным методом с использованием коммерческих тест-систем и (или) наборов реагентов.

По результатам измерения вычисляется среднее арифметическое значение оптической плотности в лунках с анализируемыми образцами. Строится калибровочный график зависимости оптической плотности от концентрации сывороточного антигена в калибровочных образцах. На основании калибровочного графика определяются концентрации анализируемых образцов.

Этап 3. Определение плазмоцитоидных и миелоидных дендритных клеток и CD64 на нейтрофилах методом проточной цитометрии

Используются следующие панели антител:

Пробирка № 1: Смесь моноклональных антител (lin-FITC, HLA-DR-PE-Cy7, CD11c-APC, CD123-PE).

Пробирка № 2: Смесь моноклональных антител (CD64-FITC, CD163-PE).

В пробирки добавляются антитела в необходимом количестве (согласно инструкции к моноклональным антителам). Затем в каждую пробирку вносится по 100 мкл крови, перемешивается на вортексе и инкубируется 15 мин при температуре 4 °С в темноте. После этого проводится лизис эритроцитов путем добавления 3 мл лизирующего раствора. Пробирки с лизированными эритроцитами перемешиваются на вортексе и инкубируются 15 мин при комнатной температуре в темноте. Центрифугированием осаждаются клетки в течение 5 мин при 1500 об/мин. Удаляется супернатант и клетки суспендируются

в 300 мкл фосфатно-солевого буферного раствора. Учет проводится на проточном цитофлюориметре.

Проточный цитофлюориметр должен быть настроен согласно инструкции по эксплуатации прибора. Анализ исследуемых образцов проводится с подсчетом клеток не менее 100 000. Для определения дендритных клеток используется следующая стратегия гейтирования: вначале на цитограмме FSC-H/SSC-H выделяется регион мононуклеарных клеток. На цитограмме HLA-DR/lin (CD3, CD14, CD16, CD19, CD20 и CD56) гейтируется регион lin-HLA-DR+. Далее на цитограмме CD11c/CD123 проводится учет миелоидных дендритных клеток с фенотипом lin-HLA-DR+CD11c+CD123- и плазмоцитоидных дендритных клеток с фенотипом lin-HLA-DR+CD11c-CD123+.

Для определения CD64 на нейтрофилах используется следующая схема гейтирования: вначале выделяется регион гранулоцитов на цитограмме светорассеяния. Затем выделяется регион CD64+ клеток и CD64+CD163- на соответствующих гистограммах.

Этап 4. Интерпретация результатов

Маркерами септического состояния пациента являются:

процентное содержание в крови миелоидных дендритных клеток ниже 0.045%;

процентное содержание в крови плазмоцитоидных дендритных клеток ниже 0.058%;

доля нейтрофилов, несущих маркер CD64, выше 20 %; содержание прокальцитонина в сыворотке крови выше 1,5 нг/мл; содержание интерлейкина-6 в сыворотке крови выше 100 пг/мл; содержание пресепсина (sCD14) в сыворотке крови выше 1 нг/мл.

Наличие любых четырех из шести вышеперечисленных показателей свидетельствует о высокой вероятности развития септического состояния пациента.

Наличие всех шести показателей свидетельствует о септическом состоянии пациента.

ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОСЛОЖНЕНИЙ ИЛИ ОШИБОК ПРИ ВЫПОЛНЕНИИ И ПУТИ ИХ УСТРАНЕНИЯ

Ошибки могут быть связаны с нарушением технологии выполнения исследования.

Пути устранения ошибок:

- 1. Соблюдение последовательности операций при выполнении исследований, соблюдение объемов реактивов.
- 2. Точное соблюдение условий хранения материалов и реактивов, необходимых для исследований.
 - 3. Точное следование инструкций по эксплуатации приборов.
- 4. При выполнении исследований необходимо соблюдать меры безопасности согласно действующим ТНПА.